Molecular mechanisms of enhanced renal cell division in protection against S-1,2-dichlorovinyl-L-cysteine-induced acute renal failure and death.
نویسندگان
چکیده
Sustained activation of ERK 1/2 by a low dose (15 mg/kg ip) of S-1,2-dichlorovinyl-l-cysteine (DCVC) 72 h before administration of a lethal dose of DCVC (75 mg/kg ip) enhances renal cell division and protects mice against acute renal failure (ARF) and death (autoprotection). The objective of this study was to determine correlation among extent of S-phase DNA synthesis, activation of transcription factors, expression of G(1)/S cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors downstream of ERK 1/2 following DCVC-induced ARF in autoprotection. Administration of the lethal dose alone caused a general downregulation or an unsustainable increase, in transcriptional and posttranscriptional events thereby preventing G(1)-S transition of renal cell cycle. Phosphorylation of IkappaBalpha was inhibited resulting in limited nuclear translocation of NF-kappaB. However, cyclin D1 expression was high probably due to transcriptional cooperation of AP-1. Cyclin D1/cyclin-dependent kinase 4 (cdk4)-cdk6 system-mediated phosphorylation of retinoblastoma protein was downregulated due to overexpression of p16 at 24 h after exposure to the lethal dose alone. Inhibition of S-phase stimulation was confirmed by proliferating cell nuclear antigen assay (PCNA). This inhibitory response was prevented if the lethal dose was administered 72 h after the low priming dose of DCVC due to promitogenic effect of the low dose. NF-kappaB-DNA binding is not limited if mice were pretreated with the priming dose. Cyclin D1/cdk4-cdk6 expression stimulated by the priming dose of DCVC was unaltered even after the lethal dose in the autoprotected group, explaining higher phosphorylated-pRB and S-phase stimulation found in this group. These results were corroborated with PCNA immunohistochemistry. These findings suggest that the priming dose relieves the block on compensatory tissue repair by upregulation of promitogenic mechanisms, normally blocked by the high dose when administered without the prior priming dose.
منابع مشابه
Preplaced cell division: a critical mechanism of autoprotection against S-1,2-dichlorovinyl-L-cysteine-induced acute renal failure and death in mice.
Previous studies have shown that renal injury initiated by a lethal dose of S-1,2-dichlorovinyl-l-cysteine (DCVC) progresses due to inhibition of cell division and hence renal repair, leading to acute renal failure (ARF) and death in mice. Renal injury initiated by low to moderate doses of DCVC is repaired by timely and adequate stimulation of renal cell division, tubular repair, restoration of...
متن کاملMetabolic activation and detoxication of nephrotoxic cysteine and homocysteine S-conjugates.
S-(1,2-Dichlorovinyl)-L-homocysteine (DCVHcy), an analogue of the nephrotoxin S-(1,2-dichlorovinyl)-L-cysteine (DCVCys), is a much more potent nephrotoxin than DCVCys both in vivo and in isolated renal proximal tubular cells. S-(1,2-Dichlorovinyl)-DL-alpha-methylhomocysteine, at equimolar doses relative to DCVHcy, is not nephrotoxic. Agents that inhibit pyridoxal phosphate-dependent enzymes (DL...
متن کاملAnimal models of acute renal failure.
The animal models are pivotal for understanding the characteristics of acute renal failure (ARF) and development of effective therapy for its optimal management. Since the etiology for induction of renal failure is multifold, therefore, a large number of animal models have been developed to mimic the clinical conditions of renal failure. Glycerol-induced renal failure closely mimics the rhabdom...
متن کاملThe role of nitric oxide in the protective action of remote ischemic per-conditioning against ischemia/reperfusion-induced acute renal failure in rat
Objective(s): We investigated the role of nitric oxide (NO) in the protective effects of remote ischemic per-conditioning (rIPerC) on renal ischemia/reperfusion (I/R) injury in male rats. Materials and Methods: I/R treatment consisted of 45 min bilateral renal artery ischemia and 24 hr reperfusion interval. rIPerC was performed using four cycles of 2 min occlusions of the left femoral artery an...
متن کاملProteomics of S-(1, 2-dichlorovinyl)-L-cysteine-induced acute renal failure and autoprotection in mice.
Previous studies (Vaidya VS, Shankar K, Lock EA, Bucci TJ, Mehendale HM. Toxicol Sci 74: 215-227, 2003; Korrapati MC, Lock EA, Mehendale HM. Am J Physiol Renal Physiol 289: F175-F185, 2005; Korrapati MC, Chilakapati J, Lock EA, Latendresse JR, Warbritton A, Mehendale HM. Am J Physiol Renal Physiol 291: F439-F455, 2006) demonstrated that renal repair stimulated by a low dose of S-(1,2-dichlorovi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 289 1 شماره
صفحات -
تاریخ انتشار 2005